Chemistry Letters 1997 985

Rh/One-atomic Layer GeO₂/SiO₂ as a New Catalyst for Ethyl Acetate Hydrogenation at a Low Pressure

Kazu Okumura, Kiyotaka Asakura,† and Yasuhiro Iwasawa*

Department of Chemistry, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113 †Research Center for Spectrochemistry, Faculty of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113

(Received June 13, 1997; CL-970448)

A new Rh/one-atomic layer GeO_2/SiO_2 catalyst was prepared by supporting $Rh_6(CO)_{16}$ precursor on the one-atomic layer GeO_2/SiO_2 followed by reduction at 423-523 K. The obtained catalyst was active and selective for conversion of ethyl acetate to ethanol by H_2 under mild reaction conditions, whereas Rh/bulk- GeO_2 and Rh/SiO_2 were inactive for this reaction. Rh carbonyl cluster, Rh metal, and RhGe alloy were formed on the one-atomic layer GeO_2/SiO_2 depending on the pre-reduction temperature. A combination of metallic Rh particles and one-atomic layer GeO_2 was most active for the ethanol production.

Catalytic hydrogenation of esters to the corresponding alcohols has been studied for so many years; copper chromite has been applied as a commercial catalyst to the production of diols from diesters or the synthesis of methanol in two-steps processes via methyl formate hydrogenation. ¹⁴ In commercial processes, however, copper chromite is operated at the pressure as high as 23 MPa, under which condition this catalyst is not so stable and is deactivated. To develop new catalysts for ester hydrogenation, several groups have investigated the catalytic properties of a soluble anionic Ru-hydride complex, ⁵ RhSn alloy catalysts, ^{6,7} and a Ru-Sn boride catalyst. ⁸ The alcohol synthesis processes via ester hydrogenation are thermodynamically superior to conventional direct hydrogenation of CO with H₂.

We have found the excellent catalytic property of Rh/oneatomic layer $\text{GeO}_2/\text{SiO}_2$ in the ethyl acetate hydrogenation to ethanol under mild reaction conditions. Activity and selectivity of this new catalyst were entirely different from those of Rh/bulk- GeO_2 , Rh/SiO₂, and Rh/three-dimensional GeO₂ particles/SiO₂.

Preparation of one-atomic layer GeO2 on SiO2 will be reported elsewhere, 9,10 Ge(OMe)₄ (Soekawa Chemicals Co.; 99.999%) was purified by distillation in vacuum before use. SiO₂ (Aerosil 300; 300 m²g⁻¹) was evacuated at 473 K for 1 h and exposed to given amounts of Ge(OMe), vapor at 393 K for 1 h, followed by evacuation at 473 K to remove the unreacted Ge(OMe)₄ and the organic products. The obtained sample was calcined at 693 K for 1 h under 20.0 kPa of oxygen in a closed circulating system. Loading of Ge was fixed at 7.4 wt%, which corresponds to 0.2 ML of the SiO₂ surface. The one-atomic layer structure was characterized by means of EXAFS, XRF, XRD, TPD, and FT-IR. 9,10 Rh was supported on the one-atomic layer GeO₂/SiO₂ by an impregnation method using a chloroform solution of Rh₆(CO)₁₆ (Aldrich Chem Co.; purity: 98%), followed by evacuation to enforce the support of Rh₆(CO)₁₆ on the GeO₂/SiO₂. The obtained sample was reduced at given temperatures for 2 h under 13.3 kPa of hydrogen. The catalyst thus obtained is denoted as Rh/GeAL/SiO2. Rh6(CO)16 was also supported on SiO₂ (Aerosil 300), GeO₂ (hexagonal type; Wako Pure Chem. Co.), and GeO₂ particles/SiO₂¹⁰ to prepare Rh/SiO₂, Rh/bulk-GeO₂, and Rh/GeO, particle/SiO₂(denoted

Table 1. The activities and selectivities(S) of the supported Rh catalysts for CH₃COOC₂H₅ hydrogenation^a

Catal	Red! ^b / K	Initial rate(r) c				S ^d
Catalyst		C_2H_5OH	CH₃CHO	CH ₄	C_2H_6	/ %
Rh/GeAL/SiO ₂	423	3.0	0	1.5	0	80
	523	3.2	0	2.7	0	70
	623	2.8	0.76	4.0	0	50
	723	1.3	1.5	2.8	0	31
Rh/bulk-GeO ₂	523	0	0.07	0	0	0
Rh/SiO ₂	523	0	0	1.8	5.1	0
Rh/GeP/SiO ₂	423	0.65	0	1.3	0	50
	723	0.27	2.4	2.0	0	8

^aReaction temperature:473 K; P(H₂):6.6 kPa; P(CH₃COOC₂H₅): 1.3 kPa; ^bPrereduction temperature; ^c10⁻⁵ mol min⁻¹ g-Rh⁻¹; ^dSelectivity to ethanol=r(C₂H₅OH)/(2 x r(CH₃COOC₂H₅)).

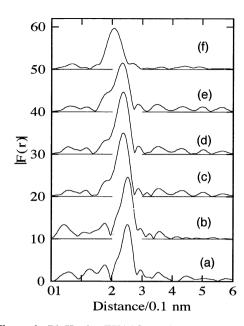

Rh/GeP/SiO₂) in a similar manner to the case of the GeO₂ layer/SiO₂. Catalytic hydrogenation reactions of ethyl acetate over 0.1 g of catalyst were conducted under a mixture of 6.6 kPa of hydrogen and 1.3 kPa of ethyl acetate at 473 K in a closed circulating system equipped by a gas chromatograph.

Table 1 shows the catalytic activities and selectivities of Rh/GeAL/SiO₂, Rh/SiO₂, Rh/bulk-GeO₂, and Rh/GeP/SiO₂ prereduced at different temperatures for the ethyl acetate hydrogenation. It was found that Rh/GeAL/SiO₂ catalyzed the ethyl acetate hydrogenation with the highest selectivity of 80% when the catalyst was reduced at 423 K, whereas Rh/SiO₂ and Rh/bulk-GeO₂ were inactive for this reaction. The major products on Rh/SiO₂ were methane and ethane. The Rh/GeAL/SiO₂ catalysts reduced at 423-523 K were most active for ethanol formation. Acetaldehyde as a by-product was produced on the Rh/GeAL/SiO₂ reduced at 623 K and the formation was enhanced by increasing prereduction temperature. The temperature of the beginning of acetaldehyde formation agreed with that of the RhGe alloy formation as characterized by EXAFS (see below).

The activity and selectivity of $Rh/GeP/SiO_2$ for the ethyl acetate hydrogenation were much less as compared with those of $Rh/GeAL/SiO_2$. A drastic effect of the morphological change of GeO_2 from the one-atomic layer to the three-dimensional crystalline particles was observed with the formation of ethanol which was suppressed drastically by the crystallinity of GeO_2 . On the other hand, the formation of methane and acetaldehyde is insensitive to the morphology of the GeO_2 on SiO_2 .

We measured EXAFS spectra for $Rh/GeAL/SiO_2$ to characterize active species for the catalytic hydrogenation (KEK PF Proposal No.94G-203). Figure 1 shows Rh K-edge EXAFS spectra for $Rh_6(CO)_{16}$ cluster, the incipient supported $Rh_6(CO)_{16}$ on $GeAL/SiO_2$, and the $Rh/GeAL/SiO_2$ reduced with H_2 at 423-

986 Chemistry Letters 1997

Figure 1. Rh K-edge EXAFS Fourier transforms for $Rh_6(CO)_{16}(a)$ and Rh/one-atomic layer GeO_2/SiO_2 (b-f); (b) incipient supported $Rh_6(CO)_{16}$, (c) reduced at 423 K, (d) reduced at 523 K, (e) reduced at 623 K, and (f) reduced at 723 K.

723 K. The framework of the Rh carbonyl cluster is retained on the GeAL/SiO₂ surface (Figure 1 and Table 2). The EXAFS data for the samples reduced at the higher temperatures than 423 K reveal destruction of the cluster framework accompanied with aggregation to small Rh particles with coordination numbers of 7.4-7.5 for Rh-Rh bond. The Rh-Rh bond length was determined to be 0.266 nm by a curve fitting technique (Table 2), which is close to the Rh-Rh bond distance of Rh metal (0.269 nm).

The peak intensity in the Fourier transform decreased by reduction of the sample at 623 K as shown in Figure 1(e). The peak in the Fourier transform for Rh/GeAL/SiO₂ reduced at 723 K (Figure 1(f)) shifted toward a shorter distance. The curve fitting by Rh-Ge one-wave gave the best result (Table 2). The Ge K-edge EXAFS analysis also confirmed the Ge-Rh bonding at 0.244 nm. The change in the bonding modes of Rh-Rh and Rh-Ge indicates gradual RhGe alloy formation on the GeAL/SiO₂ at 623 K, and RhGe alloy formation was completed by reduction at 723 K.

From these results, it may be concluded that the most active phase for the ethanol formation from ethyl acetate is the Rh metallic particles supported on the GeAL/SiO₂ which dissociates ethyl acetate to form unidentate acetate and ethoxide (FT-IR). The Rh particles themselves do not catalyze the selective ethanol formation because the Rh/SiO₂ catalysts were inactive for the ethyl acetate hydrogenation (Table 1). The RhGe alloy particles produce acetaldehyde rather than ethanol. This study

Table 2. Curve fitting results of Rh K-edge EXAFS spectra for Rh/GeAL/SiO $_2$

Sample Sc	atter atom	er CN ^a	r/nm ^b	$\triangle E_0/eV^c$	σ/nm ^d	R _f			
Incipient	Ct	2.1 ± 0.3	0.186 ± 0.0	0.8	0.0054				
supported	Cb	2.0 ± 0.3	0.217 ± 0.0	0.8	0.0054	5.6			
Rh ₆ (CO) ₁₆	Rh	2.8 ± 0.4	0.280 ± 0.0	0.9	0.0059				
reduced at 423 K	Rh	7.4 ± 1.3	0.266 ± 0.0	002 -9.0	0.0085	1.8			
reduced at 523 K	Rh	7.5±1.3	0.266 ± 0.0	002 -9.1	0.0085	1.8			
reduced at 723 K	Ge	3.5±1.0	0.244 ± 0.0	003 -5.8	0.0086	2.5			

^acoordination number, ^bbond distance, ^cdifference in the origin of photoelectron energy between the reference and the sample (±3 eV), ^dDebye-Waller factor(±0.0020 nm), ^eresidual factor.

demonstrates the significance of the use of monolayer sample as a support for metal in the catalytic hydrogenation of ethyl acetate and exemplifies the advantageous applications of inorganic oxide monolayer.

This work has been supported by CREST(Core Research for Evolutional Science and Technology) of Japan Science and Technology Corporation(JST).

References and Notes

- J. W. Evans, P. S. Casey, M. S. Wainwright, D. L. Trimn, and N. W. Cant, *Appl. Catal.*, 7, 31 (1983).
- J. W. Evans, N. W. Cant, D. L. Trimn, and M. S. Wainwright, *Appl. Catal.*, 6, 355 (1983).
- 3 J. W. Evans, M. S. Wainwright, N. W. Cant, and D. L. Trimn, J. Catal., 88, 203 (1984).
- 4 W. L. Marsden, M. S. Wainwright, and J. B. Friedrich, *Ind. Eng. Chem. Prod. Res. Dev.*, **19**, 551 (1980).
- 5 R. A. Grey, G. P. Pez, A. Wallo, and J. Corsi, J. Chem. Soc., Chem. Commun., 1980, 783.
- 6 A. E. Mansour, J. P. Candy, J. P. Bournonvivlle, O. A. Ferretti, and J.-M. Basset, *Angew. Chem. Int. Ed. Engl.*, 28, 347 (1989).
- 7 J. P. Candy, O. A. Ferretti, G. Mabilon, J. P. Bournonville, A. E. Mansour, J.-M. Basset, and G. Martino, J. Catal., 112, 210 (1988).
- 8 V. M. Deshpande, K. Ramnarayan, and C. S. Narasimhan, J. Catal., 121, 174 (1990).
- 9 K. Okumura, K. Asakura, and Y. Iwasawa, to be published.
- 10 K. Okumura, K. Asakura, and Y. Iwasawa, J. Chem. Soc., Faraday Trans., in press.
- 11 IR peaks appear at 2980 cm⁻¹ (ν_{C-H} of ethoxide and acetate), 2934 cm⁻¹ (ν_{C-H} of acetate), 2901 cm⁻¹ (ν_{C-H} of ethoxide), 1728 cm⁻¹ (ν_{C-O} of unidetate acetate), and 1391 cm⁻¹ and 1376 cm⁻¹ (δ_{C-H} of ethoxide and acetate).